

Centre for Industrial Policy Studies

Robotization Economics

St.-Petersburg 2022

The Impact of New Technologies on Labour Income Share in Russia - Intersectoral Micro-based Approach

Stanislav Rogachev

The Impact of New Technologies on Labour Income Share in Russia -Intersectoral Micro-based Approach

RESEARCH MOTIVATION

Research Motivation

labor income share decline - empirical stylized fact - Berg et al., 2018; Freeman, 2015...

Level of estimates

If LS dynamics is well-understood on the global (p.e. Karabarbounis&Neiman, 2013) or national level, intersectoral estimates are poor (only Young, 2013) and the field is underresearched

As per the reason of decline - examples

Karabarbounis&Neiman, (2013) say that "the decrease in the relative price of investment goods, often attributed to *advances in information technology*...explains roughly half of the observed decline in the labour share, even when...increasing profits, capital-augmenting technology growth, and the changing skill composition of the labor force" are considered McKinsey review five reasons for the U.S. labor share decline (Manyika et al., 2019)

- Supercycle and boom-bust effects 33%
- Rising and faster depreciation due to higher capital stocks and a shift to intangible assets 26%
- Superstar firms 18%
- Capital substitution of labor and automation 12%
- Globalization and decreased labor bargaining power -11%

As per the origin of decline – a connection to technological progress parameters

From another angle, LS is analyzed through empirical estimation of *labor-to-capital substitution elasticity*

Source: https://socialismoryourmoneyback.blogspot.com/2019/04/bumperdividends-for-share-holders.html

The Impact of New Technologies on Labour Income Share in Russia -Intersectoral Micro-based Approach

Data and Research Method

Subject

Russian manufacturing sector analyzed on intersectoral level

Panel data 7 years 2011-2017 1716 observations (firms' financial data)

4 factors of new technologies

Virtual Reality – Robotization - Artificial intelligence - 3D-printing

Not possible to include these 4 factors of robotization as dummies into the regression equation primarily because of their insignificance being included (very small subsubsamples for different industries does not allow to gain significance) and sometimes abnormal values. Hence, had to work with 4 subsamples, in each of which one factor at once was **excluded**, p.e. to illustrate VR impact on labour-to-capital elasticity of substitution, the elasticity of substitution obtained on the full sample was compared to the same of the sample in which companies with VR-technologies were excluded

Initial sample

NAs and abnormal values (obtained after taking logarithms) were omitted only after transforming the panel into the long format (with NaRV.omit function in R).

			Subsample size without				
Manufacturing subsector	OKVED	Subsample size	VR	AI	Robots	3D-printing	
Food	10	967	940	879	806	931	
Textiles	13	91	66	75	72	85	
Apparel	14	110	84	90	87	98	
Electrical equipment	15	54	38	54	23	40	
Wood (processing and manufacturing except furniture)	16	181	176	157	154	162	
Paper	17	139	125	124	79	119	
Coke and petroleum products	19	42	35	35	28	42	
Chemicals	20	228	178	185	195	186	
Pharmaceuticals	21	130	111	107	96	116	
Plastics and Rubber	22	305	267	264	205	257	
Other non-metallic mineral products	23	485	456	444	384	437	
Metallurgy	24	209	202	191	174	186	
Finished metal products except machinery and equipment	25	314	254	249	225	281	
Computers, electronic and optical							
equipment	26	100	67	48	39	73	
Electrical equipment	27	223	193	198	173	190	
Other machinery and equipment	28	407	364	330	283	359	
Motor transport, trailers and semi-							
trailers	29	154	136	128	116	142	
Other transport equipment	30	91	83	77	59	60	
Furniture	31	98	75	68	85	92	
Repair and installation of equipment	33	141	131	136	119	137	
Total		4469	3981	3839	3402	3993	

Labour Income Share Forecast Models on the basis of CES-functions with Factor-Augmenting Technical Change Data and Research Method

Data and Research Method

In the regarded short timespan Hicks-Neutral production function [1] allows to obtain substitution elasticity σ parameter, which reflects the current labour-tocapital substitution effect. Comparing σ -s for different subsamples we derive the impact of a factor excluded from a subsample. This is done on intersectoral level. Equating marginal products of [1] to prices of the respective production factors in [2] leads to [3]. Regression equation is derived from [3] by taking logarithms.

$$Y_{it} = A_t \left(\delta K_{it}^{\frac{\sigma-1}{\sigma}} + (1-\delta) L_{it}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$
[1]

$$\frac{\frac{\partial Y}{\partial L}}{\frac{\partial Y}{\partial K}} = \frac{w}{r} \quad [2] \qquad \Rightarrow \qquad \frac{w}{r} = \frac{1-\delta}{\delta} \left(\frac{K}{L}\right)^{\frac{1}{\sigma}}$$
[3]

$$\ln\left(\frac{w}{r}\right) = \ln\left(\frac{1-\delta}{\delta}\right) + \frac{1}{\sigma} \ln\left(\frac{K}{L}\right) \Rightarrow \ln\left(\frac{w}{r}\right) = \beta_0 + \beta_{KL} \ln\left(\frac{K}{L}\right) + \varepsilon \quad [4]$$

$$ln\left(\frac{K}{L}\right) = ln\left(\frac{1}{\alpha} - 1\right) + \sigma ln\left(\frac{w}{r}\right) \Rightarrow ln\left(\frac{K}{L}\right) = \delta_0 + \beta_{wr}ln\left(\frac{w}{r}\right) + \varepsilon \left[5\right]$$

Correct panel model choice via the triad of following tests F-test – FE vs Pooled – H_0 : No fixed effects Breuch-Pagan test – RE vs Pooled – H_0 : No random effects Hausmann test - H_1 : RE are inconsistent

Antras, 2004

 δ – distribution parameter σ – capital-labor elasticity of substitution

Raw collected data

L and K – number of employees and fixed assets volume, th. Rubles in company i Y_{it} - operating revenue turnover, th. Rubles of company iLabsh – [labour share] expenses for labour costs, th. Rubles in company i

$$w = \frac{1}{L}$$
 - wages

 $r = \frac{Y - Labsh}{K}$ - rental rate of capital

The Impact of New Technologies on Labour Income Share in Russia -Intersectoral Micro-based Approach RESULTS

Aggregate Results

Positive sign in columns "influence of introducing of factor (1-4) on sigma" means that factor of technology increases substitution of labour with capital in the respective manufacturing subsector

Green cells stand for significant difference between σ -s according to t-test (standard errors for these tests are taken as s.e. for β_{KL} in the respective Pooled, FE or RE <u>full</u> (aggregate) model)

In the truth of Hicks-Neutral technological progress (in the short-run) the increase in the value of labour-to-capital substitution elasticity means that the regarded factor of new technologies helps to save labour consequently imposing a negative effect on labour income share

			influence of introducing of factor (1-4) on sigma			sigma	sigma without				
Manufacturing subsector	OKVED	Model type	VR	AI	ROBOTS	3D	aggr	VR	AI	ROBOTS	3D
			(1)	(2)	(3)	(4)		(1)	(2)	(3)	(4)
Food	10	FE	-0,059	0,015	0,018	0,043	1,129	1,187	1,114	1,111	1,086
Textiles	13	Pooled	0,203	0,197	0,016	0,016	0,988	0,785	0,791	0,972	0,972
Apparel	14	RE	0,102	0,004	-0,017	-0,003	0,984	0,882	0,98	1,001	0,987
Electrical equipment	15	FE	0,079	0,013	0,242	0,02	0,813	0,734	0,8	0,571	0,793
Wood (processing and manufacturing except furniture)	16	RE	0	0,035	0,002	-0,008	1,118	1,118	1,083	1,116	1,126
Paper	17	FE	-0,021	-0,073	-0,103	-0,039	0,946	0,967	1,019	1,05	0,985
Coke and petroleum products	19	RE	0,091	0,037	-0,021	0	0,951	0,86	0,915	0,973	0,951
Chemicals	20	FE	-0,034	0,029	0,062	0,077	0,983	1,017	0,954	0,921	0,906
Pharmaceuticals	21	RE	0,081	0,105	-0,204	0,094	0,968	0,887	0,863	1,173	0,874
Plastics and Rubber	22	RE	0,059	-0,01	0,035	-0,024	0,946	0,887	0,955	0,911	0,97
Other non-metallic mineral products	23	FE	0,07	0,042	0,063	0,033	1,165	1,095	1,122	1,102	1,132
Metallurgy	24	RE	0,059	-0,001	-0,016	0,039	0,983	0,923	0,983	0,999	0,944
Finished metal products except machinery and equipment	25	FE	-0,06	-0,031	0,023	-0,008	0,936	0,996	0,966	0,912	0,944
Computers, electronic and optical equipment	26	Pooled	-0,014	0,007	0,077	0,004	0,802	0,816	0,795	0,725	0,799
Electrical equipment	27	FE	-0,011	-0,028	-0,209	-0,035	0,841	0,851	0,869	1,05	0,876
Other machinery and equipment	28	RE	0,002	-0,017	-0,047	-0,05	1,094	1,092	1,111	1,141	1,144
Motor transport, trailers and semi-trailers	29	RE	0,226	0,095	0,027	0,031	1,199	0,972	1,104	1,172	1,168
Other transport equipment	30	FE	0,033	0,182	-0,145	-0,176	0,767	0,735	0,585	0,913	0,944
Furniture	31	RE	0,11	0,154	-0,142	-0,075	1,218	1,109	1,065	1,36	1,293
Repair and installation of equipment	33	RE	0,145	0,006	0,119	0,022	1,226	1,081	1,22	1,107	1,204

New technologies - VR (virtual reality), AI (artificial intelligence), ROBOTS (robotization processes), 3D (3D-printing)

Stanislav Rogachev srogachev@hse.ru The Impact of New Technologies on Labour Income Share in Russia -Intersectoral Micro-based Approach

Thank you for attention!